You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
60 lines
1.8 KiB
Python
60 lines
1.8 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from torch.distributions import Categorical
|
|
|
|
|
|
class ActorCritic(nn.Module):
|
|
def __init__(self, seed: int = 12345):
|
|
super(ActorCritic, self).__init__()
|
|
torch.random.manual_seed(seed)
|
|
self.affine = nn.Linear(8, 128)
|
|
|
|
self.action_layer = nn.Linear(128, 4)
|
|
self.value_layer = nn.Linear(128, 1)
|
|
|
|
self.logprobs = []
|
|
self.state_values = []
|
|
self.rewards = []
|
|
|
|
def forward(self, state):
|
|
state = torch.from_numpy(state).float()
|
|
state = F.relu(self.affine(state))
|
|
|
|
state_value = self.value_layer(state)
|
|
|
|
action_probs = F.softmax(self.action_layer(state), dim=0)
|
|
action_distribution = Categorical(action_probs)
|
|
action = action_distribution.sample()
|
|
|
|
self.logprobs.append(action_distribution.log_prob(action))
|
|
self.state_values.append(state_value)
|
|
|
|
return action.item()
|
|
|
|
def calculate_loss(self, gamma: float = 0.99):
|
|
|
|
# calculating discounted rewards:
|
|
rewards = []
|
|
dis_reward = 0
|
|
for reward in self.rewards[::-1]:
|
|
dis_reward = reward + gamma * dis_reward
|
|
rewards.insert(0, dis_reward)
|
|
|
|
# normalizing the rewards:
|
|
rewards = torch.tensor(rewards)
|
|
rewards = (rewards - rewards.mean()) / (rewards.std(dim=0))
|
|
|
|
loss = 0
|
|
for logprob, value, reward in zip(self.logprobs, self.state_values, rewards):
|
|
advantage = reward - value.item()
|
|
action_loss = -logprob * advantage
|
|
value_loss = F.smooth_l1_loss(value, reward)
|
|
loss += (action_loss + value_loss)
|
|
return loss
|
|
|
|
def clear_memory(self):
|
|
del self.logprobs[:]
|
|
del self.state_values[:]
|
|
del self.rewards[:]
|