graph/DynaQ.py

76 lines
1.9 KiB
Python
Raw Normal View History

2022-07-22 13:44:29 +02:00
import numpy as np
from Environment import Env
np.random.seed(1)
class DynaQ:
def __init__(self, env: Env, episodes: int, epsilon: float, alpha: float, gamma: float, n_steps: int):
# Initialize parameter
self.env = env
self.alpha = alpha
self.gamma = gamma
self.epsilon = epsilon
self.episodes = episodes
self.n_steps = n_steps
self.time_step = 0
self.state = self.env.start
self.steps_per_episode = []
self.state_actions = []
self.step_in_episode = 0
# Initialize Q-matrix and model
self.Q = {}
self.model = {}
for state in list(self.env.G):
self.Q[state] = {}
self.model[state] = {}
for action in list(self.env.G.neighbors(state)) + [state]:
self.Q[state][action] = 0
self.model[state][action] = (-1, action, 0)
'''
Resets the model
'''
def reset(self) -> None:
self.state = self.env.start
self.state_actions = []
self.step_in_episode = 0
self.env.reset()
'''
Learning method for agent
Basically DynaQ algorithm adapted for graphs
'''
def learn(self, epsilon_decay: float, epsilon_min: float, run: int) -> None:
2022-07-22 13:46:42 +02:00
# todo: implement learning
pass
2022-07-22 13:44:29 +02:00
'''
Returns epsilon-greedy action
'''
def get_action(self, eps: float) -> int:
2022-07-22 13:46:42 +02:00
# todo: implement eval
pass
2022-07-22 13:44:29 +02:00
'''
Add Reward, next state and current time step to state-action pair in model
'''
def update_model(self, state: int, action: int, reward: float, next_state) -> None:
self.model[state][action] = (reward, next_state, self.time_step)
'''
Planning phase, basically Bellmann equation with already taken state-action pairs
'''
def planning(self) -> None:
2022-07-22 13:46:42 +02:00
# todo: implement planning
pass