todo: implement dynaq
This commit is contained in:
parent
077c635934
commit
e6c4910141
70
DynaQ.py
70
DynaQ.py
@ -48,67 +48,16 @@ class DynaQ:
|
|||||||
'''
|
'''
|
||||||
|
|
||||||
def learn(self, epsilon_decay: float, epsilon_min: float, run: int) -> None:
|
def learn(self, epsilon_decay: float, epsilon_min: float, run: int) -> None:
|
||||||
self.steps_per_episode = []
|
# todo: implement learning
|
||||||
eps = self.epsilon
|
pass
|
||||||
for episode in range(self.episodes):
|
|
||||||
done = False
|
|
||||||
self.reset()
|
|
||||||
if episode == 70:
|
|
||||||
self.env.block_node(1)
|
|
||||||
|
|
||||||
# Episodes last until the goal is reached
|
|
||||||
while not done:
|
|
||||||
print("Run: " + str(run), "n_steps: " + str(self.n_steps), "Episode: " + str(episode),
|
|
||||||
"State: " + str(self.state))
|
|
||||||
|
|
||||||
# Get action, reward and next state
|
|
||||||
action = self.get_action(eps)
|
|
||||||
self.state_actions.append((self.state, action))
|
|
||||||
(done, reward, next_state) = self.env.get_state_reward(self.state, action)
|
|
||||||
|
|
||||||
# Bellmann equation
|
|
||||||
q_current = self.Q[self.state][action]
|
|
||||||
q_max = np.max(list(self.Q[next_state].values()))
|
|
||||||
self.Q[self.state][action] = q_current + self.alpha * (reward + self.gamma * q_max) - q_current
|
|
||||||
|
|
||||||
# Update model
|
|
||||||
self.time_step += 1
|
|
||||||
self.step_in_episode += 1
|
|
||||||
self.update_model(self.state, action, reward, next_state)
|
|
||||||
|
|
||||||
# Planning phase
|
|
||||||
self.planning()
|
|
||||||
self.state = next_state
|
|
||||||
|
|
||||||
self.steps_per_episode.append(len(self.state_actions))
|
|
||||||
self.reset()
|
|
||||||
print("Goal")
|
|
||||||
eps = max(epsilon_min, self.epsilon * np.exp(-epsilon_decay * episode))
|
|
||||||
|
|
||||||
'''
|
'''
|
||||||
Returns epsilon-greedy action
|
Returns epsilon-greedy action
|
||||||
'''
|
'''
|
||||||
|
|
||||||
def get_action(self, eps: float) -> int:
|
def get_action(self, eps: float) -> int:
|
||||||
random = np.random.uniform(0, 1)
|
# todo: implement eval
|
||||||
q = float('-inf')
|
pass
|
||||||
action_list = list(self.env.G.neighbors(self.state)) + [self.state]
|
|
||||||
|
|
||||||
# greedy or not
|
|
||||||
if random < eps:
|
|
||||||
action = np.random.choice(action_list)
|
|
||||||
else:
|
|
||||||
# if all q-values have the same values
|
|
||||||
if len(set(self.Q[self.state].values())) == 1:
|
|
||||||
action = np.random.choice(action_list)
|
|
||||||
else:
|
|
||||||
# get action with highest q-value
|
|
||||||
for a in action_list:
|
|
||||||
tmp_q = self.Q[self.state][a]
|
|
||||||
if tmp_q >= q:
|
|
||||||
q = tmp_q
|
|
||||||
action = a
|
|
||||||
return action
|
|
||||||
|
|
||||||
'''
|
'''
|
||||||
Add Reward, next state and current time step to state-action pair in model
|
Add Reward, next state and current time step to state-action pair in model
|
||||||
@ -122,12 +71,5 @@ class DynaQ:
|
|||||||
'''
|
'''
|
||||||
|
|
||||||
def planning(self) -> None:
|
def planning(self) -> None:
|
||||||
for step in range(self.n_steps):
|
# todo: implement planning
|
||||||
state_rnd = np.random.choice(list(self.model.keys()))
|
pass
|
||||||
action_rnd = np.random.choice(list(self.env.G.neighbors(state_rnd)) + [state_rnd])
|
|
||||||
(reward_rnd, next_state_rnd, time_step_rnd) = self.model[state_rnd][action_rnd]
|
|
||||||
|
|
||||||
q_rnd = self.Q[state_rnd][action_rnd]
|
|
||||||
q_max = np.max(list(self.Q[next_state_rnd].values()))
|
|
||||||
|
|
||||||
self.Q[state_rnd][action_rnd] = q_rnd + self.alpha * (reward_rnd + self.gamma * q_max) - q_rnd
|
|
||||||
|
Loading…
Reference in New Issue
Block a user