todo: implement dynaq
This commit is contained in:
parent
077c635934
commit
e6c4910141
70
DynaQ.py
70
DynaQ.py
@ -48,67 +48,16 @@ class DynaQ:
|
||||
'''
|
||||
|
||||
def learn(self, epsilon_decay: float, epsilon_min: float, run: int) -> None:
|
||||
self.steps_per_episode = []
|
||||
eps = self.epsilon
|
||||
for episode in range(self.episodes):
|
||||
done = False
|
||||
self.reset()
|
||||
if episode == 70:
|
||||
self.env.block_node(1)
|
||||
|
||||
# Episodes last until the goal is reached
|
||||
while not done:
|
||||
print("Run: " + str(run), "n_steps: " + str(self.n_steps), "Episode: " + str(episode),
|
||||
"State: " + str(self.state))
|
||||
|
||||
# Get action, reward and next state
|
||||
action = self.get_action(eps)
|
||||
self.state_actions.append((self.state, action))
|
||||
(done, reward, next_state) = self.env.get_state_reward(self.state, action)
|
||||
|
||||
# Bellmann equation
|
||||
q_current = self.Q[self.state][action]
|
||||
q_max = np.max(list(self.Q[next_state].values()))
|
||||
self.Q[self.state][action] = q_current + self.alpha * (reward + self.gamma * q_max) - q_current
|
||||
|
||||
# Update model
|
||||
self.time_step += 1
|
||||
self.step_in_episode += 1
|
||||
self.update_model(self.state, action, reward, next_state)
|
||||
|
||||
# Planning phase
|
||||
self.planning()
|
||||
self.state = next_state
|
||||
|
||||
self.steps_per_episode.append(len(self.state_actions))
|
||||
self.reset()
|
||||
print("Goal")
|
||||
eps = max(epsilon_min, self.epsilon * np.exp(-epsilon_decay * episode))
|
||||
# todo: implement learning
|
||||
pass
|
||||
|
||||
'''
|
||||
Returns epsilon-greedy action
|
||||
'''
|
||||
|
||||
def get_action(self, eps: float) -> int:
|
||||
random = np.random.uniform(0, 1)
|
||||
q = float('-inf')
|
||||
action_list = list(self.env.G.neighbors(self.state)) + [self.state]
|
||||
|
||||
# greedy or not
|
||||
if random < eps:
|
||||
action = np.random.choice(action_list)
|
||||
else:
|
||||
# if all q-values have the same values
|
||||
if len(set(self.Q[self.state].values())) == 1:
|
||||
action = np.random.choice(action_list)
|
||||
else:
|
||||
# get action with highest q-value
|
||||
for a in action_list:
|
||||
tmp_q = self.Q[self.state][a]
|
||||
if tmp_q >= q:
|
||||
q = tmp_q
|
||||
action = a
|
||||
return action
|
||||
# todo: implement eval
|
||||
pass
|
||||
|
||||
'''
|
||||
Add Reward, next state and current time step to state-action pair in model
|
||||
@ -122,12 +71,5 @@ class DynaQ:
|
||||
'''
|
||||
|
||||
def planning(self) -> None:
|
||||
for step in range(self.n_steps):
|
||||
state_rnd = np.random.choice(list(self.model.keys()))
|
||||
action_rnd = np.random.choice(list(self.env.G.neighbors(state_rnd)) + [state_rnd])
|
||||
(reward_rnd, next_state_rnd, time_step_rnd) = self.model[state_rnd][action_rnd]
|
||||
|
||||
q_rnd = self.Q[state_rnd][action_rnd]
|
||||
q_max = np.max(list(self.Q[next_state_rnd].values()))
|
||||
|
||||
self.Q[state_rnd][action_rnd] = q_rnd + self.alpha * (reward_rnd + self.gamma * q_max) - q_rnd
|
||||
# todo: implement planning
|
||||
pass
|
||||
|
Loading…
Reference in New Issue
Block a user