graph/DynaQ.py

138 lines
4.6 KiB
Python
Raw Normal View History

2022-07-22 13:44:29 +02:00
import numpy as np
from Environment import Env
np.random.seed(1)
class DynaQ:
def __init__(self, env: Env, episodes: int, epsilon: float, alpha: float, gamma: float, n_steps: int):
# Initialize parameter
self.env = env
self.alpha = alpha
self.gamma = gamma
self.epsilon = epsilon
self.episodes = episodes
self.n_steps = n_steps
self.time_step = 0
self.state = self.env.start
self.steps_per_episode = []
self.state_actions = []
self.step_in_episode = 0
# Initialize Q-matrix and model
self.Q = {}
self.model = {}
for state in list(self.env.G):
self.Q[state] = {}
self.model[state] = {}
for action in list(self.env.G.neighbors(state)) + [state]:
self.Q[state][action] = 0
self.model[state][action] = (-1, action, 0)
'''
Resets the model
'''
def reset(self) -> None:
self.state = self.env.start
self.state_actions = []
self.step_in_episode = 0
'''
Learning method for agent
Basically DynaQ algorithm adapted for graphs
'''
def learn(self, epsilon_decay: float, epsilon_min: float, run: int) -> None:
self.steps_per_episode = []
eps = self.epsilon
2022-07-25 11:16:22 +02:00
self.env.reset()
2022-07-22 13:44:29 +02:00
for episode in range(self.episodes):
done = False
self.reset()
if episode == 70:
self.env.block_node(1)
# Episodes last until the goal is reached
while not done:
print("Run: " + str(run), "n_steps: " + str(self.n_steps), "Episode: " + str(episode),
"State: " + str(self.state))
# Get action, reward and next state
action = self.get_action(eps)
self.state_actions.append((self.state, action))
(done, reward, next_state) = self.env.get_state_reward(self.state, action)
# Bellmann equation
q_current = self.Q[self.state][action]
q_max = np.max(list(self.Q[next_state].values()))
self.Q[self.state][action] = q_current + self.alpha * (reward + self.gamma * q_max) - q_current
# Update model
self.time_step += 1
self.step_in_episode += 1
self.update_model(self.state, action, reward, next_state)
# Planning phase
self.planning()
self.state = next_state
self.steps_per_episode.append(len(self.state_actions))
self.reset()
print("Goal")
eps = max(epsilon_min, self.epsilon * np.exp(-epsilon_decay * episode))
2022-07-25 11:16:22 +02:00
if run == 9 and self.n_steps == 50 and episode==69:
self.env.print_shortest_path(self.Q)
if run==9 and self.n_steps==50:
self.env.print_shortest_path(self.Q)
2022-07-22 13:44:29 +02:00
'''
Returns epsilon-greedy action
'''
def get_action(self, eps: float) -> int:
random = np.random.uniform(0, 1)
q = float('-inf')
action_list = list(self.env.G.neighbors(self.state)) + [self.state]
# greedy or not
if random < eps:
action = np.random.choice(action_list)
else:
# if all q-values have the same values
if len(set(self.Q[self.state].values())) == 1:
action = np.random.choice(action_list)
else:
# get action with highest q-value
for a in action_list:
tmp_q = self.Q[self.state][a]
if tmp_q >= q:
q = tmp_q
action = a
return action
'''
Add Reward, next state and current time step to state-action pair in model
'''
def update_model(self, state: int, action: int, reward: float, next_state) -> None:
self.model[state][action] = (reward, next_state, self.time_step)
'''
Planning phase, basically Bellmann equation with already taken state-action pairs
'''
def planning(self) -> None:
for step in range(self.n_steps):
state_rnd = np.random.choice(list(self.model.keys()))
action_rnd = np.random.choice(list(self.env.G.neighbors(state_rnd)) + [state_rnd])
(reward_rnd, next_state_rnd, time_step_rnd) = self.model[state_rnd][action_rnd]
q_rnd = self.Q[state_rnd][action_rnd]
q_max = np.max(list(self.Q[next_state_rnd].values()))
self.Q[state_rnd][action_rnd] = q_rnd + self.alpha * (reward_rnd + self.gamma * q_max) - q_rnd